Author Topic: Quantum Mechanics & Our Qualitates Occultae  (Read 393 times)

0 Members and 0 Guests are viewing this topic.

Haywire Henry

  • { }
  • { ∅, { ∅ } }
  • Posts: 4744
  • Life teaches me not to want it.
    • What Now?
Quantum Mechanics & Our Qualitates Occultae
« on: February 29, 2016, 10:14:19 am »
Nevertheless, Schopenhauer would have been happy to learn how his beloved qualitates occultae would return in force with quantum mechanics: Things like strangeness, charm, baryon number, lepton number, etc., are exactly the kinds of irreducible types he demanded.

I have looked around, and I think a good place to start just to get a feel for the mathematics would be this 82 page ($3) Quantum Mechanics: A Comprehensible Introduction for Students [New Edition with Readable Equations] by the young brainiac, Shan Gao. 

I had read a sample of Quantum Field Theory for the Gifted Amateur by Lancaster & Blundell on Kindle for PC, and I give you FAIR WARNING, this is a Print Replica, and one would not be able to read it as such (print too small) ... and it is not the kind of text I could justify purchasing ,,, BUT I did find someone who actually worked out some of the exercises in this "gifted amateur" text, and these themselves are most likely the kind of treasure I am looking for ...

I found it while poking around in the physics pages.   I confess to being somewhat in awe of theoretical physicists, and where Schopenhauer mistakenly looked to the poet Goethe for scientific validation, I tend to "glorify" theoretical physicists.   They just seem very authentic to me ...

Why am I starting a thread relating Quantum Mechanics to OQO (Our Qualitates Occultae) in the Gortbusters forum? 

Perhaps OQO are like the Old Gods, and I feel that when I am crawling at such a slow pace to understand just a little of the mathematics that theoretical physicists use, I am humbly grappling with the mathematical "characteristics" of  qualitates occultae.

I don't think it can seriously harm anyone to glance through Shan Gao's generous little eBook.

Also, since I am working extremely slowly through actual textbooks on Differential Equations, I found the title of the 284 page eBook, Differential Equations in 24 Hours: with Solutions and Historical Notes rather cruel ... but it is only $3, and it is sure to be a bit more informative than the 67 page Math Shorts - Introduction to Differential Equations, which is also $3.  By the way, I found Metin Bektas's other Math Shorts on Integrals to be a great review of Integration Techniques.  I just think the 284 page eBook by Scott Imhoff (linked to above) to be more BANG for the buck.

Again, I must clarify that I approach Quantum Mechanics as a total amateur, but when it comes to the Differential Equations, I am a serious student, although of the toothless "madman" variety and not the aspiring young engineer variety.

Lastly, I must repeat the question to myself, why am I placing this in the antiquated Gortbusters forum?

Why, because it is a living example of the six sacred words, NOTHING THAT IS SO IS SO ...

One has to crawl before one can walk ... and even if I never manage to walk, if crawling is the best I can do, then it will have to suffice ...

The more I aspire to know, the further down the hierarchy of mathematics I must go to find my level of comprehension.   In the meantime, I am certainly not obligated to wait until I comprehend the mathematics used in Quantum Mechanics, which I most likely will never fully comprehend, before at least taking a peak at what the theoretical physicists are thinking about while moving their bowels on their respective toilets.

« Last Edit: March 01, 2016, 12:01:56 am by H »
Things They Will Never Tell YouArthur Schopenhauer has been the most radical and defiant of all troublemakers.

Gorticide @ Nothing that is so, is so DOT edu

~ Tabak und Kaffee Süchtigen ~

Share on Facebook Share on Twitter

Haywire Henry

  • { }
  • { ∅, { ∅ } }
  • Posts: 4744
  • Life teaches me not to want it.
    • What Now?
Re: Quantum Mechanics & Our Qualitates Occultae
« Reply #1 on: January 20, 2019, 11:01:17 pm »
In the essay Schopenhauer and the Philosophy of Mind (Peter Sjöstedt-H) I linked to in Karnak post, I learned that Erwin Schrödinger, a founder of quantum physics, was an ardent Schopenhauerian.

(From wikipedia) At an early age, Schrödinger was strongly influenced by Arthur Schopenhauer. As a result of his extensive reading of Schopenhauer's works, he became deeply interested throughout his life in colour theory and philosophy. In his lecture "Mind and Matter", he said that "The world extended in space and time is but our representation." This is a repetition of the first words of Schopenhauer's main work.

Back to Peter Sjöstedt-H:

What is Matter?

–        Nothing but force: repulsion, attraction: the cause of change.  [Schopenhauer]

–        (Today: repulsion=electromagnetism; attraction = gravity, electromagnetism, strong & weak nuclear forces)

    And that is repulsion and attraction of other ‘matter’, i.e. force.
        Thus matter is force-on-force.
        And this is causality.
            i.e. matter = force = causality

–        This identification of matter pre-empts Einstein’s matter-energy conflation by almost a century (E=MC2).

What is Force?

–        Schopenhauer makes clear that for materialists, ‘force’ is a qualitates occultae, an occult, secret quality.

    Forces are given as an axiom for explanation rather than something that can be explained.
        i.e. for materialists, a sufficient explanation is a reduction to occult unknown ‘forces’.
            (Furthermore, we only know these distinct forces through induction, and so many more could exist of which we are unaware.)

–        Therefore, even if, per impossibile, consciousness were ‘explained’ by materialism, it would be incomplete:

    The forces would remain as mysterious as the mystery explained thereby!


1. Schrödinger and Indian Philosophy

2. Notes on Schopenhauer and the Natural Sciences (4 pages by OlafWolkenhauer)

3. Schopenhauer on Space, Time, Causality and Matter: A Physical Re-
examination (Shahen Hacyan)

4. 1 Einstein's reading of Schopenhauer

« Last Edit: January 21, 2019, 11:53:22 am by Kaspar the Jaded »
Things They Will Never Tell YouArthur Schopenhauer has been the most radical and defiant of all troublemakers.

Gorticide @ Nothing that is so, is so DOT edu

~ Tabak und Kaffee Süchtigen ~

Haywire Henry

  • { }
  • { ∅, { ∅ } }
  • Posts: 4744
  • Life teaches me not to want it.
    • What Now?
Re: Quantum Mechanics & Our Qualitates Occultae
« Reply #2 on: January 21, 2019, 11:53:35 am »
I took another look at Quantum Field Theory for the Gifted Amateur by Lancaster & Blundell, and I have to say, after looking at just the first chapter, I found myself becoming acutely depressed, listening to the freezing cold winds howling outside, knowing full well that I have a difficult enough time just representing 2-dimensional vector addition geometrically.  I get it that Schopenhauer had an intuitive understanding of these things, but I seriously doubt that he would go through the required baby-steps necessary for constructing mathematical representations of these mysteries, these hidden properties. [see footnote]   Myself, I will most likely die before I am able to appreciate such a book as Quantum Field Theory for the Gifted Amateur by Lancaster, circa 2014.

Having confessed that to myself, I will still leave a suggestion here (to a future self) that there is another option (when you're ready [after going over Classical and Modern Physics texts]) that may be an ever so slightly more gentle approach, mostly because a solution manual is available:

Student Friendly Quantum Field Theory [Klauber]

AN IMPORTANT MESSAGE FROM the author of the Student Friendly QFT text, Robert Klauber:

Electronic Copies

I have become aware that someone has scanned my book and pdf copies are being passed around, in violation of copyright laws.

It has been a pleasure for me to give you, the end user, an intro to QFT that most believe is far easier to understand than, and saves a whole lot of time over, other texts on the market. I thought only of you during the years spent writing the book, and from looking around this website, you can see I am still doing so.

So, in return, I ask you to help me. If you are using, or thinking of using, a pirated electronic copy of the book, then please purchase a physical copy.

The soft cover version can be had for $57, which is less than half the cost per word of any other text covering the same material. Plus it is much easier studying technical subjects from a paper copy, where you can simultaneously hold one or more pages open to check referenced equations (and other things), write your own helpful notes and equations in margins and between lines, input corrections, and more.

Please also note that I have been considering writing a second volume on weak and strong interactions. But, since I am retired without a pension, I will be forced to do other things if the present book, due to electronic pirating, proves I will not be compensated for my time.

I thank you sincerely for paying for what I have offered you in this book.

Bob Klauber


Yes, I would like to support Klauber’s efforts to make learning physics easier by buying the book, and I certainly plan to do so when I am prepared to actually work through the text, which may be about 5 years from now, the Devil willing, and the crick don't rise.   For any serious study, I always recommend the hard copy text, and I only post links to the electronic versions to allow potential "physics students" to browse the material, where they may come to the conclusion that they have several if not many years of prerequisite mathematics to study before approaching this "user friendly"  treatment of what still amounts to some very heady material.

I encourage the purchase of this text WHEN YOU ARE READY.   Myself, even at the old age of soon to be 52, I have humbly embraced the reality that I must go over quite a bit of math for a few years (at least) before seriously approaching this text.   In the meantime, it is cool to be able to browse through it to give us potential students an idea of where we need to focus our attention, as far as the math goes.

Talk about disillusionment!  It is quite possible that, by the time some of us get around to purchasing this text, Mr. Bob might have "passed on," and yet, even in that case, a hard copy would be worth having for the serious autodidact.  We'll keep our eyes peeled for this one.  In the mean time, I would advise anyone remotely interested in "quantum theory" to be sure to be comfortable with basic "matrix theory," not to mention calculus-based physics, which requires a strong foundation in algebra, geometry, trigonometry, and, of course, what we call "Linear Algebra."

It may serve to bolster our egos when we equate matter and energy, and one may wonder if all the mathematical physics is even necessary.  What would Schopenhauer do?   

At this point, I can't even concern myself with wondering if Schopenhauer tinkered with differential equations and linear algebra.  I know he had the capacity, but I suspect the tedium would aggravate him, as he wished to understand the riddle of existence in general.  I have this feeling that Schopenhauer might find the technical (mathematical) details tedious drudgery.

To be honest, it can all become extremely depressing to consider how much time is required to build the mathematical foundation.   An honest man must not allow himself to panic, and must guard against being discouraged by liars and egotistical academecians.

We must crawl before we can walk.   It's a long road.

Before I would even think of studying quantum field theory or quantum mechanics, I would want to have a better grasp of basic VECTOR SPACES and linear transformations.

I wonder how many youth commit suicide over the thought of just how much there is to learn.   Then I also wonder if so much knowledge can yield understanding.

Can one understand without such knowledge?

It appears that Schopenhauer may have understood on an intuitive level what had later been turned into a science via advanced mathematics.

Even if I never posses a small fraction of Schopenhauer's understanding, I would at least wish to spend the remainder of my life pecking away at the "baby math" so that I might have just enough knowledge to better understand a book like Student Friendly Quantum Field Theory by Robert D. Klauber or even Quantum Field Theory for the Gifted Amateur by Lancaster & Blundell - even if I am 68 years old studying it!   :o

The important message I am trying to convey is that there is no shame in accepting that certain disciplines are beyond one's grasp, and that it is OK to return to high school and undergraduate mathematics for a good ten years.   An article in a popular science magazine about Quantum Mechanics will not cut the mustard.

This is a concrete example of what it means to "unearth disillusionment."   It's like saying, "I hate to burst your bubble, but ..."

On the other hand, I can offer some consolation to those who sincerely don't give a lick damn about such things:  Understanding is not a requirement for this existence.  The only requirements are birth and death.  Why do I burden myself with the desire to understand "the math" ?

I have nothing better to do, and I do not pressure myself to actually understand anything at all, but only to peck away at gaining knowledge a little at a time, in baby steps, accepting the great likelihood that, in the end, a great deal of knowledge may lead to only a small degree of understanding.   At least I will die with a totally deflated ego and welcome the sweet release of death's warm embrace!   :D

FOOTNOTE : Simple example of mathematical representation of a qualitas occulta:
from The World as Will and Representation, Volume 1, page 72

The theorem of Pythagoras teaches us a qualitas occulta of the right angled triangle; the stilted, and indeed subtle, proof of Euclid forsakes us at the why, and the accompanying simple figure, already known to us, gives at a glance far more insight into the matter, and firm inner conviction of that necessity, and of the dependence of that property on the right angle, than is given by his proof.
Now, the following image is not from Schopenhauer's work, but he is talking about intuitive knowing - directly through perception.

Rather than thinking a^2 + b^2 = c^2, we imagine

The sides are squared.  You gain insight at a glance.

So what does Schopenhauer mean when he says "Pythagoras teaches us a qualitas occulta of the right-angled triangle"? Pythagoras teaches us the hidden quality of right-angled triangles?  Pythagoras teaches us the ultimate cause or inner nature of right triangles?
« Last Edit: January 21, 2019, 09:28:55 pm by Kaspar the Jaded »
Things They Will Never Tell YouArthur Schopenhauer has been the most radical and defiant of all troublemakers.

Gorticide @ Nothing that is so, is so DOT edu

~ Tabak und Kaffee Süchtigen ~